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I am broadly interested in algebraic geometry and the related topics. Cur-
rently, I am working on the following topic:

0.1 Birational geometry of moduli space of K3 surfaces

0.1.1 Current work

Let Fg be the coarse moduli space of the quasi-polarised K3 surfaces (S,L)
of degree L2 = 2g − 2 > 0. From Hodge theoretic construction, the global
Torelli theorem says the moduli space Fg is isomorphic to a Shimura variety of
orthogonal type. From GIT side, Fg can be realised as a quotient space of a
certain parameter space in the sense of Mumford’s GIT. In low degree, Fg can
also be viewed as moduli space of certain K-stable Del Pezzo surface pairs. It
turns out these three view points will provide different compactifications. In
joint works [4] with Francois Greer, Radu Laza, Zhiyuan Li, Zhiyu Tian, we
extend the so-called Hassett-Keel-Loojigenga program to the moduli space of
K3 surfaces with Mukai model, which is a log minimal model program (LMMP)
on moduli space. By Mukai [7], for g ≤ 7, a general K3 surface of genus g can be
realised as a complete intersections of sections of a homogenous vector bundle
on certain homogenous space, eg, a general K3 surface of genus g = 4 is zero
locus of a section of vector bundle E := OP4(2) ⊕ OP4(3) → P4. These models

provide a natural GIT compactification, say FGITg .
Let Pd,h be the primitive Noether-Lefschetz divisor on Fg parametrizing

quasi-polarise K3 surfaces (S,L) of genus g with additional curve class β ∈
H2(S,Z) such that

L β
L 2g − 2 d
β d 2h− 2

.

We propose to study

Fg(s) = Proj R(F◦g , (λg + s∆)|F◦
g
)

Here F◦g is the complement of certain Noether-Lefschetz divisors and ∆ is a
certain combination of Noether-Lefschetz divisors, see [4] for the complete list of
our choice F◦g and ∆ for g ≤ 7. We conjecture varying s there are wall-crossings
which give a explicit resolution of birational maps of the two compactifiactions
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F∗g ∼= Fg(0) 99K Fg(1) ∼= F
GIT

g .

and modularity principles for the wall-crossing hold, that is, at each wall, the
birational is a flip or divisorial contraction centered at shimura subvarieties (or
its proper transformation ) of F∗g . For g = 3, our model recover the model
studied by Laza-O’Grady [5]. For g = 4, we give a complete conjecture

Conjecture 0.1 ([4]) Let F◦g be the complement of P1,1 and P2,1 and let ∆ =
P3,1. Then

1. the ring of sections

R(F◦g , (λg + s∆)|F◦
g
) ∼= R(Fg, λg + P1,1 + (4s+ 1)P2,1 + sP3,1) (1)

is finitely generated for s ∈ [0, 1] ∩Q.

2. The interpolating models between F6(0) and Fg(1) undergoes elementary
birational transformations (flips or divisorial contractions) at the following
walls
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Let sn be the slope of the n-th wall and set

Fg(sn, sn+1) = Fg(s), s ∈ (sn, sn+1).

and E±i the exceptional divisors of the birational maps

Fg(sn−1, sn) Fg(sn, sn+1)

Fg(sn)

f−
n f+

n (2)

3. The exceptional divisor E+
n is the proper transformation of a Shimura

subvariety Sn ⊆ Fg.

Theorem 0.2 (Greer-Laza-Li-Si-Tian [4]) Conjecture 0.1 holds when 0 ≤
s ≤ 2

3 or s = 1.

Our results provide more evidence of modularity principle.
The birational geometry of a variety is controlled by its various cone, eg, its

ample cone, effective cone. There are many re for Mg, see for a survey. For Fg,
few is known. Let Eff(F∗g ) (EffNL(F∗g )) be the cone in Pic(F∗g ) generated by
effective divisor ( rep. primitive Noether-Lefschetz divisors ) a question asked
by Peterson in [9] is

Question 0.3 1. Is Eff(F∗g ) finitely generated ?

2. Eff(F∗g ) = EffNL(F∗g ) ?
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As a byproduct in our study of Hassett-Keel-Loojigenga program, we give a
negative answer for question 2 of 0.3:

Theorem 0.4 (Greer-Laza-Li-Si-Tian [4]) For g = 4, EffNL(F∗g )  Eff(F∗g ).

Moreover, we also give plenty of examples extremal effective divisors:

Theorem 0.5 (Greer-Laza-Li-Si-Tian [4]) The primitive Noether-Lefschetz
divisors Pd,h on F∗g are extrmal provided |d2 − 4(g − 1)(h− 1)| ≤ 15

8 (g − 1).

0.1.2 Future work

Investigate the the wall-crossing in 0.1 with the relation of wall-crossing in K-
stability.

0.2 Explicit K-moduli space of log Fano surface pair

0.2.1 Current work

The algebraic construction of compact K-moduli space has attracted lots of at-
tentions, eg, see [12] for the most recent survey. Especially, Ascher-DeVleming-
Liu [1] establish a framework for the K-moduli space of log Fano pairs and
wall-crossing phenomenon. But the explicit examples are rare. A project that I
am working on is the following: Let Pd,ε be the moduli space of 2-dimensional
K-semistable log Fano pair smoothing by (X, εD) where X is a Del Pezzo surface
of degree d = (−KX)2 and D ∈ | − 2KX |, ε ∈ (0, 1

2 ) ∩Q.
Observe that a double covering φ : S → X of Del Pezzo surface of degree d

branched along a curve D ∈ | − 2KX | will give a K3 surface (S, φ∗(−KX); τ) of
genus d−1 with anti-involution τ . Using period map of K3 with anti-involution,
we get Torelli theorem for the open subset P ◦d,ε of Pd,ε parametrizing smooth
pairs. So we can identify P ◦d,ε as a open subset a shimura varieties. In work in
progress, I will

1. give a explicit description of the wall-crossing for d = 4, 5 using the meth-
ods of VGIT.

2. Compute the volume of CM-line bundle on Pd,ε for d = 5 (note that degree
4 case has been computed by recently Tambasco), which corresponds to
Weil-Peterson volume in differential geometry.

3. give a conjectural picture for the wall at ε = 1
2 , which identify moduli

spaces of log CY surface and certain arithemetic compactification of P ◦d,ε
and try to prove it.

0.2.2 Future work

Let Pg moduli space of pairs (X,S) where X is a smooth Fano 3-fold with
(−KX)3 = 2g − 2 and S ∈ | − KX | is a smooth divisor which produces a K3
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surface (S, (−KX)|S)of genus of genus g. Denote Wg the moduli space of smooth
Fano 3-folds of volume (−KX)3 = 2g − 2. The forgetting

(X,S)

X (S, (−KX)|S)

will give a natural morphism

Pg

Wg Fg
pg

qg (3)

Question 0.6 Is there a compactification using K-moduli theory for Wg and Pg
to extend the diagram 3 to be a morphism ? If so, what kind of compactifiaction
Fg should choose ? and what is the boundary morphism ?

Further problems I plan to explore are

Problem 0.7 1. Investigate the topological properties of the K-moduli spaces
n-dimenional Fano varieties.

2. Compute the Picard group of the K-moduli spaces n-dimenional Fano va-
rieties and Investigate its ample cone, effective cone.

3. Investigate the relation in A∗(Fg) from Wg. Can we get new relations in
A∗(Fg) different from those from arithmetic (eg, Borchards relations) and
MOP’s localization of relative virtual cycles.

0.3 Cohomology of moduli space of cubic fourfolds

0.3.1 Current work

Let M be the moduli space of cubic fourfolds with ADE singularities at worst.
Denote D the period domain and Γ the monodromy group. The locally sym-
metric space Γ\D has Baily-Borel compactification (Γ\D)∗. The global Torelli
theorem identify M as a open subset of (Γ \D)∗. Based on Kirwan’s work, we

first compute the cohomology of the partial resolution M̃ of the GIT compact-
ifiaction of M ,

Theorem 0.8 (Si [10] ) The Poincare polynomial of M̃ is given by

Pt(M̃) =1 + 9t2 + 26t4 + 51t6 + 81t8 + 115t10 + 152t12 + 193t14

+ 236t16 + 280t18 + 324t20 + 280t22 + 236t24 + 193t26

+ 152t28 + 115t30 + 81t32 + 51t34 + 26t36 + 9t38 + t40.

4



Using decomposition theorem, we also compute the intersection cohomology
( middle perversity) of its Baily-Borel compactification

Theorem 0.9 (Si [10]) The Poincare polynomial of intersection cohomology
of (Γ \D)∗ is

IPt((Γ \D)∗) =1 + 2t2 + 4t4 + 9t6 + 16t8 + 26t10 + 38t12 + 50t14

+ 65t16 + 82t18 + 112t20 + 82t22 + 65t24 + 50t26

+ 38t28 + 26t30 + 16t32 + 9t34 + 4t36 + 2t38 + t40.

The cohomology of moduli spaces of cubic threefolds have been computed in
[3]. But our case is much complicated.

0.3.2 Future work

To compute the cohomology of M = Γ \ D − H∞ and Γ \ D where H∞ is a
Heegner divisor . I plan to use the result in [11] to determine the kernel of kirwan
map. But unluckily, the first two exceptional divisors is not in the setting of
[11]. I am trying to overcome this difficulty.

0.4 Cycle theory of Moduli spaces of K3 surfaces

0.4.1 Current work

In [6], Marian-Opera-Pandharipande defined the tautological ring R∗(Fg) of
moduli spaces of K3 surfaces Fg. Let NL∗(F2l) be the subring generated by
Noether-Lefchetz locus. Marian-Opera-Pandharipande make a conjecture that
the two subrings are the same. This is proved by Pandharipande- Yin by inter-
secting WDVV and Getzler relations on M0,4 and M1,4 respectively. In their
study of R∗(Fg), Pandharipande- Yin ask the following question for Fg:

Question 0.10 (Pandharipande-Yin) Do the following results hold ?

1. R18(Fg) = 0, R19(Fg) = 0;

2. R17(Fg) = Q[λ17
g ].

The question is very hard in general. In joint work in progress with Opera,
Pandharipande, Yin, we will give a positive answer to the question 0.10 for
g = 2 case. Actually, using equivariant chow ring and based on geometry of
plane sextic curves, we can determine the ring structure of A∗(F2).

0.4.2 Future work

Related conjectures that I am interested are the following
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1. Conjecture 0.11 ([8]) Let Mg,n(πΛ, β) be the relative moduli space of

stbale maps of the family of K3 surfaces (X ,L1, · · · Lr)
πΛ−−→ FΛ and Mg,n(πΛ, β)

ev−→
Xn be the evaluation map, then

ev∗([Mg,n(πΛ, β)]red) ∈ R∗(Xn).

where R∗(Xn) is the tautological subring of A∗(Xn).

The conjecture is open even when FΛ is a point.

2. Conjecture 0.12 (Bergeron-Li [2]) Let Fh be the moduli space of h-
polarised IHS 2n-fold, then

R∗(Fh) = NL∗(Fh).

3. Conjecture 0.13 (Bergeron-Li [2]) Denote RH∗(Fh) := Im(R∗(Fh)
cl−→

H∗(Fh)) and NLH∗(Fh) := Im(NL∗(Fh)
cl−→ H∗(Fh)). Then

RH∗(Fh) = NLH∗(Fh).
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